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ABSTRACT A technique was developed  to  improve spectral mixture analysis 
estimates of snow-covered-area in alpine  regions  through the use of multiple snow 
endmembers. Snow npcEtance in near  infrared wavelengths  is  sensitive  to snow grain 
size  while  insensitive  in  visible  wavelengths. Alpine wgions often  exhibit large snow 
surfce grain size gradients  due  to changes in aspect  and  elevation. The sensitivity of 
snow spectral reflectance to  grain  size translates these grain  size  gradients  into  spectral 
gradients. To spectrally  characterize  a  snow-covered  imaged  domain with mixture 
analysis, the variable  spectral  nature O f  snow must be accounted for by use of multiple 
snow endmembers of v m ' n g  grain size. W e  perform numerical simulations to 
demonstrate the grain  size  sensitivity of mixture d y s i s f o r  a  range of sizes and show 
fractions. From Airborne Visibk$lnfiared Imaging Spechometer (AWNS) data 
collected  over Mammoth  Mountain, CA on April 5, 1994, a  suite of snow image 
endmembers  spanning the imaged  region's  grain size range  were  extracted. Mixture 
models withfixed  vegetation, rock,  and  shade were  applied with each snow endmember. 
For each pixel, the maw-fraction estimated by the  model with least mixing mor 
(RMS) was chosen to produce an optimal  map of sub-pixel  snow-covered area. Results 
were  venFed with a  high  spatial  resolution aerial photograph  demonstrating  equivalent 
accuracy. Fraction under/ove@ow analysis  and  residuals  analysis  confirm  mixture 
analysis  sensitivity  to  grain  size  gradients. 
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INTRODUCTION 

Snow covers over 30% of the Earth's land surface seasonally and through its melt is the dominant source of 

fresh water to many regions. An example is the western United States which  receives as much as 80% of its 

annual fresh water from melt of high mountain snow storage. Because snow has  the highest albedo of any 

natural  and spatially-extensive surface, it plays an important role in the Earth's radiation budget. The areal 
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. extent of snow cover is likely  to be a sensitive indicator of climate change because a warmer climate may force 

a higher snow line and earlier onset of melt.  Thus, it is necessary  to monitor snow-covered area and other 

snow properties at ranges of temporal and  spatial scales. 

Spatial distributions of snow-covered-area (SCA) are crucial inputs to hydrologic and climatologic modeling 

of alpine  and other seasonally snow-covered areas (Dozier, 1989). SCA is necessary to parameterize energy 

and hydrology budget calculations in mesoscale and general circulation models (Marshall and Oglesby,1994), 

to initialize and validate distributed snowmelt modeling efforts (Hanington  et al., 1995), and to provide a basis 

from which to estimate snow water equivalent (SWE)(Martinec and Rango, 1981). Remote sensing has been 

shown to be an effective and necessary means of deriving  maps of snow-covered-area (Dozier, 1989; N o h ,  

1993; Rosenthal, 1993; Rosenthal and Dozier, 1996). Early efforts of mapping  snow  produced binary 

classifications through supervised and  unsupervised techniques (Rango and Itten, 1976) and thresholds and 

normalized differences (Dozier, 1989). Yet binary classifications are problematic for  areas comprised of 

combinations of snow, rock, vegetation, water, and ice. To account for this 'mixed pixel' problem, recent 

efforts in mapping  snowcovered-area  have  used linear spectral mixture analysis to derive sub-pixel snow 

cover fractions. However, fixed spectral endmember  suites have been forced to characterize regions in which 

rough topography produces snow grain size gradients. Because snow spectral reflectance is sensitive to grain 

size, grain size gradients represent spectral gradients. In other words, the target (snow) is spectrally 

manifested as a range of endmembers. Presented here is a technique through which a map of the distribution 

of surface grain size is incorporated into spectral mixture analysis of AVIRIS data to spectrally characterize the 

imaged domain and more accurately estimate sub-pixel SCA. 

BACKGROUND 

Snow Optical and Physical Properties 

The spectral signature of snow is characterized by near 100% reflectance in visible wavelengths and 

moderate reflectance in near-infrared wavelengths. Ice is highly transparent  in visible wavelengths, so an 

increase in grain size has little effect on reflectance. However, in the near-infrared, ice is moderately 
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absorptive due to an increase of seven orders of magnitude in the imaginary part of the complex index of 

refraction (Fig. 1). Reflectance,  then, is sensitive to grain size, particularly across the wavelength range 1.0 - 1.3 

pm,  which spans the diagnostic ice absorptions at 1.03 pm and 1.26 pm  (Fig. 2). These relationships have been 

exploited in grain size mapping from remote sensing (Dozier and Marks, 1987; N o h ,  1993; Green and Dozier, 

1996). It is important to note that the sensitivity of snow spectral reflectance  to grain size decreases with 

increasing grain size (Fig. 2). Model calculations of spectral reflectance assume a spherical ice crystal. Further 

reference to grain size in this paper is to the size of this 'equivalent sphere' which is assumed to have  the  same 

surface-to-volume ratio as the irregularly shaped grains of the  snowpack (Warren, 1982). 

Alpine snow-covered regions frequently exhibit large surface grain size gradients, driven largely by altitude, 

slope, and aspect. When snow is deposited on the surface, grains immediately begin the shape- and size- 

modlfyrng process of metamorphism. Initially, grain size decreases when fragde, thermodynamically-unstable 

dendritic crystal branches are destroyed through collisions and  water vapor transport. Larger grains then 

begin to grow at the expense of smaller grains via melt-refreeze and vapor transport  driven by  microscale and 

mesoscale temperature  gradients (Arons and Colbeck,1995). Metamorphism is faster at higher temperatures, 

in  the presence of liquid water, and  under larger temperature  gradients (Langham, 1981; Colbeck, 1979). 

Therefore, grains tend to  be larger at lower elevations, on those slopes oriented to  receive maximal incoming 

shortwave radiation, and  in  the form of depth hoar at the base of the snowpack and  under impermeable ice 

layers. The rough topography of alpine regions can then result in large grain size gradients, which are 

translated into spectral gradients by the sensitivity of snow reflectance to grain size. 

Previous Snow-Covered Area Mapping 

Binary  classifications of snow-covered area from remote sensing (Rango and Itten, 1976; Dozier and Marks, 

1987; Dozier, 1989) give erroneous results for mixed  pixels.  To  classlfy  a  pixel as snow, sub-unity snow 

fraction thresholds must be met. For example,  a  pixel composed of, say, 75% areal snow coverage may be 

classified as snow  and, hence, attributed a value of 100% snow cover. This results in  an overestimation of 

SCA. While image-wide errors may  offset  to produce a reasonable image SCA, the spatial distribution of SCA 
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is not well represented. This problem grows with the size of the sensor footprint, particularly in rugged alpine 

terrain. To more accurately map sub-pixel  SCA,  f.ocus turned to spectral mixture analysis (Nolin, 1993; 

Rosenthal, 1993). 

Spectral mixture analysis has  as  an objective the definition of sub-pixel proportions of spectral endmembers 

that may be related to mappable surface constituents (Adams et al., 1993). Linear mixture analysis has  been 

used to map abundance of soil,  minerals, and vegetation (Adams et al., 1986; Smith et al., 1990; Roberts, 1991). 

For cases in which no linear mixture of spectra can adequately represent the  measured spectrum, nonlinear 

mixture analysis has been used (Nash and Conel, 1974; Mertes et al., 1993; Roberts et al., 1993; Bore1 and 

Gerstl, 1994). In the linear mixture case, fractions of spectral endmembers determined by least-squares are 

considered to represent surface areal fractions (i.e. pixel snow fraction). This can be thought of as the 

‘checkerboard’ scenario in which photons interact with only one surface material before interception by the 

sensor. An example of linear mixing in alpine terrain is rock outcrops surrounded by an optically deep 

snowpack. In the nonlinear mixture case, fractions of spectral endmembers are  disproportionate with surface 

areal fractions. The disproportional relationship derives from the interaction of photons with multiple surface 

constituents. Nonlinear mixing in alpine regions occurs when photons are absorbed by snow impurities or the 

substrate of a shallow snowpack, and  through  the multiple scattering of photons between vegetation and the 

snow surface. Details of the equations of mixture analysis will be discussed in a later section. 

The linear spectral mixture approach has been shown to be  effective in mapping SCA in alpine regions with 

Thematic Mapper data (Rosenthal, 1993; Rosenthal and Dozier, 1996) and AVIRIS data (Nolin, 1993). These 

efforts have incorporated fixed endmember suites of snow, vegetation, rock and  shade in VIS/NIR bands. 

However, fixed suites of spectral endmembers are  not necessarily optimal for image-wide endmember 

detectability (Sabol et al., 1992). For snow, the presence of grain size gradients presents a range of snow 

spectral signatures for which a single snow  endmember cannot mathematically account. To explore the 

discrepancy between theory and the previous application of mixture analysis to mapping sub-pixel %A, we 

now  summarize the efforts of N o h  (1993) and Rosenthal and Dozier (1996). 
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In the work by N o h  (1993), when a  fixed endmember suite  was used on AVIRIS data of Mammoth 

Mountain, CA, root mean squared (RMS) errors for known snow-covered-areas were reasonable, 

predominantly in  the  range of 0 - 3%, and SCA was mapped well.  Such  a result might imply the adequacy of a 

single snow  endmember  in spectrally characterizing the entire spatial domain, yet the associated grain-size 

map (Fig. 3.8 in N o h ,  1993) reveals near-uniform grain size across above-timberline terrain. Indeed, snow 

had been falling until 45 minutes prior to image acquisition, at which time cloud cover gave way to clear sky 

(Noh,  personal communication). In this case,  then,  a single image snow endmember is valid and adequate. It 

should be noted though  that a comparison of the RMS image (Fig. 2.8 of N o h ,  1993) with the grain size map 

(Fig. 3.8 of N o h ,  1993) reveals an increase in mixing error with an increase in  grain size, from the  range 0 - 1% 

RMS for grain sizes 50 - 75 pm to 2 - 3% for grain sizes of 100 - 125 pm. 

To unmix Thematic Mapper  data of the Sierra Nevada, Rosenthal and Dozier also used a  fixed endmember 

suite (Rosenthal and Dozier, 1996). However,  to account for the spectral difference between sunlit  snow and 

shaded snow, endmembers for both cases were incorporated. In so doing, grain size differences may also have 

been accounted for. Two reference scenes were used for mixture analysis;  a  December scene and a  May  scene. 

The morning before the December  acquisition, 0.36 m of snow  had fallen.  A large solar zenith angle (670 at 

time of overpass) and most likely  cold temperatures would have limited grain sizes to a narrow  range of fine 

crystals. A range of snow endmembers would not be necessary in this case. The May acquisition followed 19 

days of warm temperatures and smaller solar zenith (320 at time of overpass) since the last snowfall of 0.05 m. 

Under these conditions, grain  radii  grew to 1 mm or larger and  the snowpack was isothermal (Rosenthal, 

personal communication). The sunlit and shaded  snow  endmembers selected were for coarse-grained old 

snow. As mentioned before, the sensitivity of the spectral reflectance of snow to grain size decreases as grain 

size increases. Therefore, grain size gradients in this range of grain sizes would produce little spectral contrast 

and  the use of uniform grain size snow endmembers was effective. RMS error images were not presented, but 

the scene mean RMS error  was 0.012 for  both dates. 

It is clear from these works that the necessity of multiple snow endmembers of varying grain size can lie 
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only between snowfall and the complete coarsening of the snowcover. Yet this interim accounts for much of 

the winter and  spring because snowfall resets surface grain size and growth varies spatially. Our working 

hypothesis then is that multiple snow endmembers which span  the grain size range of an imaged domain 

exhibiting a grain size gradient with radii up to -1 mm are necessary to spectrally characterize the domain and 

provide accurate estimates of sub-pixel snow-covered area. We predict that  the use of a snow endmember to 

unmix a  pixel of different grain size will result in mixing error and  an erroneous snow fraction estimate. In 

particular, we  predict  that a snow endmember unmixing a  pixel of larger grain size snow will overestimate 

snow reflectance in the spectral range 1.0 - 1.3 pm and result in negative residuals. Numerical mixture 

simulations were performed to predict magnitude and sign of error in modeling the mixture spectral 

signatures and estimating sub-pixel snow fraction.  We then tested the hypothesis on AVIRIS data collected 

over Mammoth Mountain, CA on April 5,1994. 

SPECTRAL MIXTURE ANALYSIS 

The linear mixture assumption was used in this work on  the basis of i )  conclusions by Rosenthal(l993) that 

linear mixing is broadly applicable for mapping montane snow packs and ii) the emphasis of our work was to 

evaluate  the effects of varying grain size on mixture results, which are linear when considered spatially. 

Spectral mixture analysis used the following mixing rules (Gillespie et al., 1990): 

N 

R, = r;l Ri,, + E, (1) 
i=l 

where Rc is the  apparent surface reflectance in AVIRIS band c, Fi is the fraction of endmember i, Ri,c is the 

reflectance of endmember i in AVIRIS band c. N is the number of spectral endmembers and Ec is the residual 

error  in AVIRIS band c  for the fit of the N endmembers. Fractions are derived using the unconstrained 

Modified Gram-Schmidt least-squares method (Golub and Van  Loan, 1983) in this over-determined case of 224 

measurements and N unknowns where N << 224. Unconstrained analysis requires summation of fractions to 

unity  but permits negative and super-unity fractions for endmembers, whereas constrained analysis forces 



fractions to  be between 0 and 1 in addition to summation to unity. Constrained analysis limits fractions to 

physically-meaningful quantities but  the  added constraint masks sub-optimal mixtures which result in 

erroneous fractions. The unconstrained method allows mixtures to  be optimized which in  turn highlights 

regions of poor modeling. 

The residual errors E, are calculated by rearranging the linear mixture model 

Analysis of residuals reveals the spectral locations of errors in modeling the measured spectrum. Residuals 

have been used to separate and map surface constituents whose spectral signatures are degenerate except for 

subtle absorption features (Gillespie et al., 1990), such as lignin and cellulose absorptions which separate non- 

photosynthetic vegetation from soils (Roberts et al., 1993). 

The measure of the quality of fit by the mixture model across the spectral range is the  average root mean 

squared ( R M S )  error, which is calculated as follows: 

where M = number of AWUS bands  in spectral mixture analysis. 

The estimate of sub-pixel snow-covered area is made by calculating the shade-normalized snow fraction 

estimates, derived as follows: 

L =  E 
F, + F, + F, 

wherefs is the shade-normalized snow fraction, Fs is the spectral snow fraction, Fv is the spectral vegetation 

fraction and Fr is the spectral rock fraction. 

MIXING  SIMULATIONS 

To confirm the hypothesis and evaluate magnitude and sign of error, we performed linear mixing 
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simulations for ranges of grain size and  snow fraction. Each snow spectrum of grain size from 50 to 1500 pm 

at 10 pm increments was mixed with a pure  quartz  spectrum for snow fractions ranging from 0 - 100%. To 

maintain simplicity, the quartz fraction was treated as complementary in summation of fractions to unity. In 

excluding a variable shade fraction we treated each pixel as fully-illuminated. Snow spectra were modeled as 

directional-hemispherical reflectance and  the  quartz spectrum was acquired from  the US Geological Survey 

Spectral Library contained in Research Systems Incorporated ENVI software. All spectra were converted to 

1994 AVIRIS bandpasses. The result was a three dimensional array consisting of 146 snow grain radii by 101 

snow fractions by 224 spectral bands. 

Mixture analysis, as described above, was performed on the  data  array with snow  endmember of grain 

radius 200 pm, the  quartz endmember used  in mixing, and photometric shade (0% reflectance at all 

wavelengths). The map of RMS error (Fig.  3a) demonstrates  that the snow  endmember of correct grain radius 

is necessary to properly model  the spectrum, regardless of snow fraction. Independent of snow fraction, RMS 

error is 0.0% for mixtures with  snow of grain size 200 pm. As snow grain size varies from 200 pm,  RMS error 

increases, most quickly at the largest snow fractions. Even at small snow fractions, the mixing error is non- 

trivial. 

Shade-normalized snow fraction (sub-pixel  SCA) was calculated from the fractions derived in  the mixture 

analysis. In Figure 3b, we present the shade-normalized snow fractions across snow grain size for the case of 

100% snow. At grain  radius of 200 pm, shade-normalized snow fraction was properly estimated at 1.0. But, as 

grain size increases above 200 pm, the predicted sub-pixel SCA increases to nearly 1.2 at 1500 pm. This is 

because the  quartz fraction becomes negative to compensate for the overestimate of reflectance  by the 200 pm 

snow endmember for a larger grain size snow  and, hence, the snow fraction is divided by  a  lesser quantity. 

Likewise, as grain radius decreases below 200 pm, predicted sub-pixel SCA decreases to 0.86 at 50 pm. This is 

due to the positive quartz fraction which compensates for the underestimate of reflectance by the 200 pm snow 

endmember for the smaller grain size snow. In either case, the shade endmember complements the fraction 

summation to unity. The greater sensitivity of shade-normalized snow fraction to grain size at smaller grain 
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sizes is due to the aforementioned greater sensitivity of snow reflectance to grain size at smaller grain sizes. 

While shade-normalized snow fraction errors decrease as snow fraction decreases,  they remain non-trivial. 

This simulation confirms the hypothesis that the proper grain size-snow endmember is required to spectrally 

characterize and  provide an accurate sub-pixel snow fraction estimate for a  pixel containing snow. 

DATA and METHODS 

This hypothesis was tested on an April 5,1994 AVIRIS scene of Mammoth Mountain, CA  (Fig.  4). The 

AVTRIS instrument fies aboard the NASA  ER-2 at  an altitude of  20 km. The nominal instrument field of view 

is 10.5km and ground instantaneous field of view (GIFOV) is 20m.  However, the Mammoth Mountain scene 

has a mean altitude of approximately 3000m, whereby instrument field of view is -8.9 km and GIFOV is -17 

m.  AVIRIS measures 224 contiguous spectral bands  with nominal 10 nm spectral bandwidth, spanning  the 

wavelength range 400 - 2500 nm. 

Site 

Mammoth Mountain, CA lies on the eastern slope of the Sierra Nevada at 37”37’45”N, 11W2’05”W (Fig. 4). 

Imaged elevations range  from 2450 m at the town of Mammoth Lakes (far right) to 3362  m at the  summit of 

Mammoth Mountain (just  below center of image). North is toward  the  upper  right  comer from the center of 

the image. The summit ridge of Mammoth Mountain is identified as the distinct change in illumination above 

timberline, down and left of the center of the image. Mean snow water equivalence (SWE) at peak 

accumulation is 0.8 m at  our  study site at 2950 m on  the  north  side of Mammoth Mountain. The high 

mountain mixed forest is dominated by Lodgepole Pine, Mountain Hemlock, White Bark  Pine,  Red  Fir,  Jeffrey 

Pine, and Manzanita. The soils and exposed rock outcrops consist of pumice, glacial till, granite, metamorphic, 

and recent volcanics. 

Solar zenith angle at time of acquisition was 31.4” and  azimuth was 1.1” east of south. March 28 through 

April 3 were characterized by  clear  skies, maximum temperatures of 5 to looC and minimum temperatures of - 
3.5 to 0.5<, conditions for rapid grain growth. On the morning of April 4,6 mm of precipitation fell in the 

form of snow at the  study site. April 5 had clear skies and a high temperature of  5.640C at the  study site. 
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Method 

Calibrated radiance data was converted to apparent surface reflectance using the atmospheric transmission 

model MODTRAN3 (Anderson, 1995) linked to  a nonlinear least-squares water vapor fitting routine (Green et 

al . ,  1993). A map of snow grain size (Fig. 5) was generated using the method of  Nolin (1993). The spectral 

mixture band subset consisted of 175 bands which constitutes the AVIRIS spectrum excluding detector 

overlapping bands  and  bands affected  by the water vapor absorptions centered at 1.38 pm and 1.87 pm. 

Previously we  used the 4 VIS/ 13 NIR channel selection of Nolin but  found results to  be too sensitive to noise. 

Mixing models may be evaluated  in three fundamental ways; analysis of  RMS error, fraction 

under/overflow, and residuals (Adams et al., 1993; Gillespie et alJ990). In this work, optimization was 

performed by minimizing RMS error. Snow fraction under/overflow  and residuals were used to confirm that 

differences in grain size were responsible for mixing errors. 

Image endmembers  were chosen for vegetation and rock from regions estimated to be relatively pure using 

color infrared imagery, complete spectral signatures, and knowledge of the region. The vegetation 

endmember  used  in the analysis was extracted from a dense stand of Lodgepole Pine and Jeffrey Pine. 

Pumice near the summit of Mammoth Mountain was selected as the rock endmember because of its extensive 

exposure on  the mountain. Guided by the grain size map for the scene, five image endmembers were chosen 

for snow of varying grain size; -120  pm (N2 SNOW - north side of summit ridge), -150 pm (SW SNOW - south 

side of summit ridge), -253 pm (S SNOW - just above timberline on  south side of mountain), -350 pm (N1 

SNOW -just below timberline on ski run on north side of mountain), -478 pm (E SNOW - below timberline on 

lobe of eastem-most ski run) (Fig.  5).  With  vegetation,  rock, and photometric shade endmembers fixed, 

mixture models using the unconstrained Modified  Gram-Schmidt method (Golub and Van  Loan, 1983) were 

run with each snow endmember to derive spectral fractions for each constituent. The shade  endmember was 

treated as complementary in endmember fraction summation to unity. RMS error  and shade-normalized snow 

fraction images were produced for each model (Figs. 6,7). Optimization was then carried out by  choosing, for 

each pixel, the lowest RMS error  and its respective snow fraction estimate from among the  five models to 
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create a minimum RMS error (MIN  RMS) image  (Fig. 6 )  and its accompanying  snow fraction image (MIN 

RMS) (Fig. 7) .  

RESULTS/DISCUSSION 

Grain  size  distribution 

The grain size distribution at time of acquisition exhibited large gradients (Fig. 5). Grain radii near the 

summit  were  mapped to be in the range of 75 - 175 pm with smaller grains on the north (75-125 pm). On the 

south side, grain radii increased  from the summit to -300 pm at timberline. On the north  side of the mountain, 

grain radii increased to -300 pm at timberline as well, but continued to increase on  the sub-timberline ski runs 

to -600 pm. Some patches at the base of the  mountain  approached radii of 700 pm. In this case, multiple snow 

endmembers should be  necessary to properly model the spectral domain and provide accurate estimates of 

sub-pixel  snow-covered area. 

RMS errors 

Figure 6 shows RMS error images  for each mixing model  and the RMS error image for the  minimum pixel- 

by-pixel RMS error among the five models.  Inspection of the individual model RMS error  images demonstrates 

that a single snow  endmember  was inadequate to spectrally model the entire domain. Mean image-wide RMS 

errors were as follows: 2.24% (N2 SNOW), 1.93% (SW  SNOW), 1.22% ( S  SNOW), 1.13% (N1 SNOW), 1.10% (E 

SNOW), and 0.82% (MIN RMS). 

The  N2 SNOW endmember (120pm) had near 0% RMS error on the north side of the  summit ridge where 

grain sizes are smallest and small errors of < 2.5% on the south side of the summit ridge where grains are 

slightly larger. Yet the RMS error increases to 5.0%+ at lower elevations where grain sizes approached 600 pm. 

The E SNOW endmember (478 pm),  however, gave near 0% RMS error in  large-grain domains and errors 

increasing with decreasing grain size to 5.0%+ RMS error in the small-grain domains. A comparison of the N1 

SNOW and S SNOW RMS error results demonstrated that this technique is relatively (not accounting for 

anisotropy of snow reflectance) insensitive to aspect. Both endmembers  were  from regions of intermediate 
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grain size but opposite aspects (different illumination). Nonetheless, spatial RMS error distribution and 

magnitude were very similar, with differences appearing to  be  merely due to grain size differences.  Likewise, 

snow fraction estimates for this pair were similar (Fig. 7) .  Consistent with theory, for both models, RMS 

increased in regions of larger and smaller grain radii with the largest increases at smaller grain-radii. The SW 

SNOW endmember (150 pm) also exhibited little mixing error for small grain radii, but increasing mixing error 

with increasing grain radius. The above patterns  are consistent with the hypothesis and  the mixing 

simulations. The RMS error image for MINRMS demonstrated that the suite of snow  endmembers was 

spectrally complementary in  reducing image-wide mixing error. The multiple snow  endmember approach 

si@cantly bounds RMS error  and serves to better characterize the spectral domain of this scene. It is 

important to note  that mixing errors for the  north  side of the  summit ridge are consistently smaller than those 

for the south side of the  summit ridge except in  the case of the 150 pm endmember model. This is due to 

illumination: the smaller magnitude of apparent surface reflectance on  the  north side pixels permits residuals 

to be smaller in  magnitude  than for the  south  side pixels which are well illuminated, even though the error 

may be larger by percentage. 

Sub-pixel snow-covered area 

Shade-normalized snow fractions for individuals models and MIN RMS are  presented in Figure 7. In 

individual models, where RMS error  was lowest, snow fraction estimates were within reasonable bounds (0.0 - 
1.0) and  appropriate given location and spectral signature. Where RMS error increased, fraction overflow 

and/or inappropriate values dominated. Snow fraction estimates for the SW SNOW model (150 pm) were 

appropriately near 1.0 at high elevations on the south  side of the summit and slightly underestimated at 0.85 

on the north side of the summit, yet at low elevations, estimates approached 1.5+ @ugh  RMS error). Snow 

fraction estimates for the E SNOW model (478 pm) exhibit near 1.0 values at low elevations, and severe 

underestimates as low as -0.5 at high elevations. The N1 SNOW and S SNOW models, which are of 

intermediate grain size (-300 pm) and similar RMS errors  and snow fraction estimates, exhibited snow 

fractions near 1.0 in middle elevations, overflow ( -1.3 ) at low  elevations, and  underflow ( -0.6 ) at high 
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elevations. The N2  SNOW model (120 pm) snow fraction estimates were similar to those of the SW snow 

model, but more appropriate at near 1.0 on  the  north  side of the  summit ridge. The snow fraction image for 

MIN  RMS, the desired product, was generally well-bounded and  appropriate at all elevations. Above 

timberline, snow fractions ranged from 75 - 100%. Below timberline on the ski runs, snow fractions were 

likewise between 80 and 100 % . The smaller values were  due to the  ground instantaneous field  of view 

spanning  snow  and vegetation. The density and  spatial distribution of vegetation was demonstrated by the 

lower snow fractions in the sub-timberline. While the lower snow fractions in the trees are spectrally 

appropriate, they simply represent the projection of visible snow into the plane of the instrument. Because 

snow  was most likely hidden below the canopy, the  actual fractional snow-covered area was severely 

underestimated. This is a limitation of optical sensors and not  the technique. Geometrical optical modeling 

combined with imaging spectrometry may eventually have  the capacity to solve this problem. 

Some scattered pixels were attributed SCA values greater than 1.0 and a large patch at  the right  edge of 

the image is attributed negative snow fractions. The patches for which SCA was estimated to be greater than 

1.0 corresponded to shaded snow, grain sizes lying between those of endmembers for which the optimal 

endmember was  the smaller, and grain sizes considerably greater than the 478 pm endmember. A more 

detailed analysis of these errors will  be  necessary, but  it is likely that greater snow endmember grain size 

resolution, a greater span of snow endmember grain sizes, and the use of shaded snow endmembers will 

resolve these errors. The large patch of negative SCA corresponded to  a  south-facing, snow-free slope covered 

by Manzanita, which is not  used as an  endmember  in this modeling effort. Spectra for Manzanita, acquired 

with an Analytical Spectral Devices FR field spectrometer, demonstrated that a negative snow spectral fraction 

would be necessary to model Manzanita with the given pine endmember. More accurate modeling will 

incorporate multiple vegetation and rock types. 

As validation, we compared the MIN RMS sub-pixel  SCA estimates with SCA esthates derived from an 

aerial photograph acquired concurrently with AVIRIS imaging. The aerial photograph was taken by the Wild- 

Heerbrug RC-IO metric mapping camera which is mounted aboard the ER-2. From  20 km altitude, the 
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photograph provides spatial resolution of 1.5 - 4 m depending  on location within image. The photograph was 

digitized at greater resolution and coregistered with the MIN  RMS sub-pixel SCA map. SCA estimates from 

the multiple snow endmember mixture analysis and aerial photographs for 13 regions are  shown in Fig. 8. The 

’ relationship was modeled well  by  a linear regression (photographic = 0.0242 + 0.962 AVIRIS) with r2 = 0.981. 

95% confidence intervals are plotted for slope  and intercept. The 95% confidence interval for  slope was from 

0.8723 to 1.0507 and for the intercept was from -0.0301 to 0.0785. Given these bounds, the hypothesis that 

slope is 1 and intercept is 0 could not be rejected, and we conclude that the technique of multiple  snow 

endmembers gives SCA results comparable to those from high resolution aerial photographs. 

Residuals 

Analysis of residuals was  used to confirm that  grain size difference was  the primary source of mixing error. 

A residual image was created for the SW SNOW (150 pm) mixture model. The residual image consists of 

mixing error  in each of the 175 spectral bands for the entire spatial domain. We extracted residuals across 

wavelength for a pure snow pixel with grain size of -150~pm and  the source pixel for the E SNOW 478 pm 

endmember.  As expected, residuals for the similar-sized grain pixel were bounded 0.1 %. However, the 

residuals for the large-grain  pixel (478 pm) were  large  and grain size-dependent (Fig. 9). Two pairs of strong 

residuals corresponded to  ice absorptions: negative residuals across the 1.03 pm and 1.26 pm ice absorptions 

and positive residuals across the 1.5 pm and 2.0 pm ice absorptions. The negative residuals were -5% and 

-10% respectively, and were due to the overestimation of the large grain reflectance  by the  small grain 

endmember. The positive residuals were -5.5% and -6% respectively, and  were due to the dynamic signature 

of small grain snow in the wavelength range 1.5 pm  to 2.5 pm fitting the relatively flat signature of large grain 

snow (Fig. 2). Reflectances at the 1.5 pm and 2.0 pm absorptions were underestimated while the reflectances at 

the 1.8 pm and 2.25 pm peaks were overestimated. These results provided the spectral confirmation needed 

to conclude that grain size mismatch between modeled spectrum and endmember results in mixture modeling 

errors which increase with the difference in grain sizes. 
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CONCLUSIONS 

Mixture modeling results for AVIRIS data of Mammoth Mountain, CA demonstrated that multiple snow 

endmembers representing a range of grain sizes are necessary to spectrally characterize and provide  an 

accurate estimate of snow-covered-area for a  scene containing sigruficant snow grain size gradients. Changes 

in NIR reflectance with grain size were the primary source of mixing error in fixed endmember-suite spectral 

mixture models. RMS error correlation with grain size in fixed snow endmember models strongly indicated 

this dependence. Shade-normalized snow fraction estimates for fixed suites of endmembers were accurate in 

regions for which the snow grain size of the pixel was comparable to that of the snow endmember. But in 

regions of grain size mismatch, snow fractions were overestimated when the grain size was larger than  that of 

the  endmember and underestimated when  the grain size was smaller than  that of the endmember. Erroneous 

snow fractions estimates ranged from -50% to -150% for nearly pure snow pixels. The optimized sub-pixel 

SCA map (MINRMS) provided generally well-bounded and appropriate results given location. The small 

patches of erroneous snow fractions in the optimized map appear to result from inadequate modeling of 

shaded  snow  and insufficient resolution and range of grain size of snow endmembers. Residuals analysis 

provided the spectral confirmation of the mixture analysis grain size sensitivity. 

Further work is needed to evaluate the effects of shaded snow, nonlinear mixing in thin/impure  snow  and 

between vegetation and snow, anisotropic reflectance from  the  snow surface, and multiple scattering between 

terrain facets. In using image endmembers, the number of snow endmembers is limited, whereby the 

resolution of grain size is coarse. This appears to have caused SCA overflow errors  in  the optimized map. To 

improve the resolution of grain size and provide snow endmembers for imaged domains lacking pure  snow 

pixels  (e.g.  Boreal  forest, large-footprint instruments), reference snow endmembers must be incorporated. To 

account for variation in vegetation and rock type  in  mapping snow cover,  a spectral reference library should 

be used or the technique of partial-unmixing should be incorporated (Boardman et al., 1995). 

Estimates of sub-pixel snow-covered area from the use of multiple snow endmembers provide more 

accurate parameterizations for hydrologic and climatologic models. AVWSderived SCA results are limited 
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to use in basins encompassed by the relatively small field of view of the instrument. Nonethless, AVIRIS data 

are currently in process of analysis to provide parameterization and validation for distributed snowmelt 

models of basins such as Emerald Lake, CA (Harrington et al., 1995). The technique of multiple snow 

endmembers will be useful in deriving global coverage of subpixel SCA from data acquired by spaceborne 

imaging spectrometers such as the TRW  LEWIS and instruments with a larger pixel size and field of view, 

such as the Mission to Planet Earth EOS Moderate Resolution Imaging Spectroradiometer (MODIS). 
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FIGURE CAFTIONS 

Figure 1. Imaginary part of complex index of refraction of ice. 

Figure 2. Directional-hemispherical reflectance of snow for illumination angle of 00 and grain radii r 
from 50-1000 pm. 

Figure 3. Numerical mixture simulation results of unmixing with snow endmember of grain size r = 
200 pm and  quartz rock endmember, a) RMS error for data array, b) shade-normalized snow 
fraction estimated by unmixing 100%-snow pixel of given grain size. 

Figure 4. Reference AVIRIS three-band image of Mammoth Mountain, CA. North is toward the 
upper right comer from center of image. The  summit ridge diagonals across image below and 
left of center. Ski runs are visible on  the  north  side of the mountain. The town of Mammoth 
Lakes is seen in the lower right comer. Red = 558.7 nm, Green = 1212.4 run, Blue = 1678.6 nm. 
Yellow and bright red are snow-covered, dark  red to black are vegetation, and blue is exposed 
rock, soil, pavement, and shrub-covered soil. 

Figure 5. Map of optically equivalent snow  grain size for Mammoth Mountain, CA, on April 5, 
1994, calculated using the technique of N o h  (1993a). 

Figure 6. RMS error images for individual mixture models and pixel-by-pixel minimum RMS error 
(MIN RMS). The grain size of the snow  endmember  used  in mixture analysis is displayed with 
each model. 

Figure 7. Sub-pixel snow fraction images for individual mixture models and for pixel-by-pixel  sub- 
pixel snow fraction corresponding to  model  with minimum RMS error (MIN RMS). 

Figure 8. Photographic versus AVIRIS estimates of sub-pixel  SCA for 13 sites. The relationship is 
modeled well  by linear regression with slope of 0.962, intercept of 0.0242, and  an r2 of 0.981. 
95% confidence intervals (solid  lines) for  slope and intercept contain 1 and 0. The accuracies of 
the methods of estimating sub-pixel  SCA are thus considered equal. 

Figure 9. Spectral plot of residuals for -478 pm grain size (E SNOW) pure snow pixel unmixed by 
-150 pm grain size snow endmember. Large residuals at ice absorptions of wavelength h = 
1.03pm, 1.26pm, 1.5 pm, and 2.0 pm demonstrate  the grain size sensitivity of mixture analysis 
for snowcovered imaged regions. 
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